skip to main content


Search for: All records

Creators/Authors contains: "Heller, Matthias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We compute mixed QCD-electroweak corrections to the neutral-current Drell-Yan production of a pair of massless leptons in the high invariant mass region. Our computation is fully differential with respect to the final state particles. At relatively low values of the dilepton invariant mass, m ℓℓ ∼ 200 GeV, we find unexpectedly large mixed QCD-electroweak corrections at the level of − 1%. At higher invariant masses, m ℓℓ ∼ 1 TeV, we observe that these corrections can be well approximated by the product of QCD and electroweak corrections. Hence, thanks to the well-known Sudakov enhancement of the latter, they increase at large invariant mass and reach e.g. − 3% at m ℓℓ = 3 TeV. Finally, we note that the inclusion of mixed corrections reduces the theoretical uncertainty related to the choice of electroweak input parameters to below the percent level. 
    more » « less
  2. null (Ed.)
    A bstract We perform a dedicated study of the $$ q\overline{q} $$ q q ¯ -initiated two-loop electroweak-QCD Drell-Yan scattering amplitude in dimensional regularization schemes for vanishing light quark and lepton masses. For the relative order α and α s one-loop Standard Model corrections, details of our comparison to the original literature are given. The infrared pole terms of the mixed two-loop amplitude are governed by a known generalization of the dipole formula and we show explicitly that exactly the same two-loop polarized hard scattering functions are obtained in both the standard ’t Hooft-Veltman-Breitenlohner-Maison γ 5 scheme and Kreimer’s anticommuting γ 5 scheme. 
    more » « less